Yash Sirvi

 \Box +91 8653689057 | \blacksquare yashseervikk2@gmail.com | \Box Yash Sirvi | \bigcirc C-12-14

EDUCATION

Indian Institute of Technology Kharagpur B. Tech. in Computer Science and Engineering (CGPA: 9.31) (Transcript)	West Bengal, India Dec 2021 - Present
Research Interests	
Algorithms Reinforcement Learning Robotics	Planning
Experience	
• Conducted a study of learning-based and non-learning-based methods for solving the Travel	~
• Developed a divide-and-conquer algorithm with a nearest neighbor heuristic to cluster subpr	coblems.
• Reduced problem size through graph sparsification and used graph diffusion model for gener improve candidate set selection for the Lin-Kernighan Heuristic (LKH) solver	ating edge probabilities to
 Achieved up to a 40x speedup and reduced the optimality gap from 11.54% to 0.02% on instances and producing high-quality result. 	
 Bachelor Thesis Project - Supervisor: Prof. Aritra Hazra and Ananye Agarwal Indian Institute of Technology Kharagpur, Carnegie Mellon University Extended Split and Aggregate Policy Gradients (SAPG) for Multi-Agent Reinforcement Lea integrated centralized training and decentralized execution (CTDE) for efficient training Demonstrated promising results in simple MARL environments like the OpenAI multi-agent Currently focused on improving stability of training and testing on more complex environment 	particles environment
 Undergraduate Researcher - Supervisor: Prof. Debashish Chakravarty Autonomous Ground Vehicle Research Group Optimized Game Theoretic Planner for F1Tenth head-to-head competitive racing with non-optimized MDMM solver and JAX's JIT compilation, achieving a 3x speedup through systematic Planter for Planting Reproducibility Challenge (2022 and 2023), submitting Mentored a team of 30 undergraduates in the field of Planning, Computer Vision, and Reinford 	tem-level optimizations g two preprints to TMLR
 IEEE Winter Workshop Mentor (2023) & 1st Runner-Up (2022) [2023 Certificate] [2022 Certificate] Mentored 160+ first-year undergraduates on Computer Vision and Path Planning fundament Secured 1st Runner-Up in '22 by implementing path planning algorithms and a Traffic Sign 	~ -
 Tech Lead CodeClub: Computer Science and Engineering Department Society Participated and organized multiple hackathons and competitions in the field of competitive Helped in organizing Professor Talks about various topics of research and technology in the field 	
Projects	
 TOTO Benchmark Challenge NeurIPS Competition - 1st Position [Report] [Code] [Awa Implemented and integrated a goal-conditioned diffusion-based behavior cloning agent for eff Designed a novel architecture to fine-tune vision representations by aligning embeddings wit 	ficient offline training

- and next action-states and the final goal state, improving downstream task performance • Conducted comprehensive testing of behavior cloning and Offline RL algorithms, performing detailed ablation studies
- to analyze the effectiveness of vision encoders and reinforcement learning pipelines 2024

Decoupled Vertical Federated Learning (DVFL) | NeurIPS SSL Workshop Paper | [Paper]

- Contributed to algorithm design for fault-tolerant federated learning on vertically partitioned data
- Extensively experimented on tabular & multi-view datasets, analyzing performance under varying fault conditions
- Achieved better performance than state-of-the-art algorithms and comparable performance in perfect conditions

Entity Augmentation for Efficient Classification in VFL | IJCAI GLOW Workshop Paper | [Paper]

- Contributed to entity augmentation technique to eliminate entity alignment in Vertical Federated Learning
- Conducted experiments on tabular, multi-view, & image datasets, showing improved performance on misaligned data

2024

• Achieved state-of-the-art results with label interpolation, reducing computational overhead on benchmarks

Efficient Regression Test Selection for C++ | Systems Intern at Quadeye | [Completion Letter] May – July 2024

- Developed a toolset for efficient regression test selection with symbol-level granularity and linkage analysis
- Worked with LLVM Intermediate Representation to create representations and analyze targets effectively
- Designed a highly efficient and parallelized pipeline to analyze the entire codebase using a single CMakeFile

The Chandrayaan Moon Mapping Challenge – ISRO | InterIIT Tech Meet 11.0 - 1st Position | [Code] Jan 2023

- Implemented deep learning models for image super-resolution of lunar surface data captured from TMC-2 module
- Fine-tuned HAT, RealESRGAN and SwinIR pretrained weights on downsampled images of the lunar surface
- Achieved 16x super-resolution going from 5m to 30cm spatial resolution similar to Chandrayaan OHRC Module

Element Abundance Detection Using XRF Spectrum – ISRO | Inter-IIT Tech Meet 13.0 | [Event] Dec 2024

- Designed an efficient Ball Tree algorithm for finding intersections and merging scan files for creating abundance maps
- Accelerated physics model by ISRO used by XSPEC by 4x using JIT compilation and loop optimizations

Stanford: Health Monitoring in LMICs | Foreign Training Program | [Report] | [Certificate] May - Aug 2023

- Used satellite imagery and geo-tagged data along with ground level surveys to predict maternal and child health
- Handled over 120 satellite datasets with 11k+ features and performed feature engineering and data cleaning
- Carried out ablation studies and hyperparameter tuning to achieve MCRMSE: 11.16 on 6 different health factors

Verilog Based 32-bit RISC Processor | Course Project: Computer Organization Laboratory | [Code] Aug - Oct 2023

- Designed and synthesized a 32-bit RISC processor in Verilog, including Instruction Set Architecture, Control Unit, Datapath, and Micro-Operations, and implemented it on an FPGA using Vivado
- Developed an assembler to convert assembly code to machine code and tested functionality using Booth's algorithm
- **Compiler for tinvC** | Course Project: Compilers Laboratory | [Code] Aug - Oct 2023

• Developed a compiler for tinyC, a subset of C language, to compile C code to binary code using flex, bison and C++

• Implemented symbol tables which support nesting, type checking, intermediate code generation, and backpatching

PUBLICATIONS

- Avi Amalanshu, Yash Sirvi, and David Inouye. Decoupling Vertical Federated Learning using Local Self-Supervision. NeurIPS 2024 Workshop: Self-Supervised Learning - Theory and Practice. [Link]
- Avi Amalanshu, Viswesh Nagaswamy*, G. V. S. S. Prudhvi*, Yash Sirvi*. Entity Augmentation for Efficient Classification of Vertically Partitioned Data with Limited Overlap. In: Jinyang Guo et al. (Eds.), GLOW. Springer Nature Singapore, 2024, pp. 53-65. [Link] (*Equal Contribution)
- Sabariswaran Mani, Abhranil Chandra*, Sreyas Venkataraman*, Yash Sirvi*, Adyan Rizvi*, Soumojit Bhattacharya*, Aritra Hazra. DiffClone: Enhanced Behaviour Cloning in Robotics with Diffusion-Driven Policy Learning. arXiv preprint, 2024. [Link] (*Equal Contribution)

TECHNICAL SKILLS

Languages: Python, C/C++, Bash, Verilog, MIPS32, LATEX Tools: Git, ROS, Docker, Jupyter Lab, SLURM, WandB, MuJoCo, Gym, IsaacGym, LLVM, CMake Libraries: NumPy, pandas, Matplotlib, PyTorch, Tensorflow, HuggingFace, OpenCV, Gurobi, cvxpy, JAX

Coursework

• University:

- Deep Learning
- Algorithms-I, Algorithms-II Algorithmic Game Theory
- **Convex** Optimization
- **Reinforcement** Learning

- Information Retrieval
- Formal Language & Automata Theory Software Engineering
- Probability and Statistics
- Linear Algebra for AI and ML
- Advanced Calculus
- * Programming and Data Structures

Analysis

Compilers

*

*

Stochastic Processes

Systems Programming

Computer Architecture and Organization

Switching Circuits and Logic Design

Discrete Structures

- Linear Algebra, Numerical and Complex
- MOOCs/Online Courses: CS182: Deep Learning (UC Berkeley) | CS285: Deep Reinforcement Learning (UC Berkeley) | Deepmind x UCL: RL (David Silver) | Convolutional Neural Networks, Unsupervised Learning, Recommenders, RL (deeplearning.ai/Coursera)

ACHIEVEMENTS

- Part of the Gold winning InterIIT Tech Meet Contingent 2023, in The Chandrayaan Moon Mapping Challenge event
- Participated and won Silver in InterIIT Cultural Meet 6.0 2023 for the Quiz event. I am an avid quizzer and have created many quiz sets of my own.